55,996 research outputs found

    Fracture mechanics evaluation of Ti-6A1-4V pressure vessels

    Get PDF
    Computer program calculates maximum potential flaw depth after specific cyclic pressure history. Kobayashi's solution to critical stress intensity equation and empirical relation for flaw growth rate are used. Program assesses pressure vessels of any material but only cylindrical or spherical shapes

    Silly Yaks

    Full text link

    CSM programs SM RCS propellant quantity gaging systems program

    Get PDF
    Computer program calculates actual and useable remaining propellant quantities as required in positive expulsion rocket engine propellant feed system. Program establishes relationship between helium system pressures and temperatures and propellant weight remaining in tanks. Program is written in FORTRAN 4 for IBM-360 computer

    Embedding laws in diffusions by functions of time

    Full text link
    We present a constructive probabilistic proof of the fact that if B=(Bt)t0B=(B_t)_{t\ge0} is standard Brownian motion started at 00, and μ\mu is a given probability measure on R\mathbb{R} such that μ({0})=0\mu(\{0\})=0, then there exists a unique left-continuous increasing function b:(0,)R{+}b:(0,\infty)\rightarrow\mathbb{R}\cup\{+\infty\} and a unique left-continuous decreasing function c:(0,)R{}c:(0,\infty)\rightarrow\mathbb{R}\cup\{-\infty\} such that BB stopped at τb,c=inf{t>0Btb(t)\tau_{b,c}=\inf\{t>0\vert B_t\ge b(t) or Btc(t)}B_t\le c(t)\} has the law μ\mu. The method of proof relies upon weak convergence arguments arising from Helly's selection theorem and makes use of the L\'{e}vy metric which appears to be novel in the context of embedding theorems. We show that τb,c\tau_{b,c} is minimal in the sense of Monroe so that the stopped process Bτb,c=(Btτb,c)t0B^{\tau_{b,c}}=(B_{t\wedge\tau_{b,c}})_{t\ge0} satisfies natural uniform integrability conditions expressed in terms of μ\mu. We also show that τb,c\tau_{b,c} has the smallest truncated expectation among all stopping times that embed μ\mu into BB. The main results extend from standard Brownian motion to all recurrent diffusion processes on the real line.Comment: Published at http://dx.doi.org/10.1214/14-AOP941 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An Optimal Skorokhod Embedding for Diffusions

    Full text link
    Given a Brownian motion BtB_t and a general target law μ\mu (not necessarily centered or even integrable) we show how to construct an embedding of μ\mu in BB. This embedding is an extension of an embedding due to Perkins, and is optimal in the sense that it simultaneously minimises the distribution of the maximum and maximises the distribution of the minimum among all embeddings of μ\mu. The embedding is then applied to regular diffusions, and used to characterise the target laws for which a HpH^p-embedding may be found.Comment: 22 pages, 4 figure

    Classes of Skorokhod Embeddings for the Simple Symmetric Random Walk

    Get PDF
    The Skorokhod Embedding problem is well understood when the underlying process is a Brownian motion. We examine the problem when the underlying is the simple symmetric random walk and when no external randomisation is allowed. We prove that any measure on Z can be embedded by means of a minimal stopping time. However, in sharp contrast to the Brownian setting, we show that the set of measures which can be embedded in a uniformly integrable way is strictly smaller then the set of centered probability measures: specifically it is a fractal set which we characterise as an iterated function system. Finally, we define the natural extension of several known constructions from the Brownian setting and show that these constructions require us to further restrict the sets of target laws

    On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale

    Get PDF
    We study the joint laws of a continuous, uniformly integrable martingale, its maximum, and its minimum. In particular, we give explicit martingale inequalities which provide upper and lower bounds on the joint exit probabilities of a martingale, given its terminal law. Moreover, by constructing explicit and novel solutions to the Skorokhod embedding problem, we show that these bounds are tight. Together with previous results of Az\'ema & Yor, Perkins, Jacka and Cox & Ob{\l}\'oj, this allows us to completely characterise the upper and lower bounds on all possible exit/no-exit probabilities, subject to a given terminal law of the martingale. In addition, we determine some further properties of these bounds, considered as functions of the maximum and minimum.Comment: 19 pages, 4 figures. This is the authors' accepted version of the paper which will appear in Stochastic Processes and their Application
    corecore